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• 6-diazo-5-oxo-L-norleucine (DON), a potent glutamine antagonist, broadly blocks glutamine utilizing reactions critical for the synthesis of nucleic acids, amino acids, proteins
and the generation of alpha-ketoglutarate essential for energy metabolism.1

• DON has shown robust efficacy in multiple preclinical cancer models and exploratory clinical studies. Although promising, development of DON was halted due to its dose-
limiting gastrointestinal (GI)-toxicities, as the GI system is highly dependent on glutamine utilization.

• Given DON’s promising efficacy, we developed novel tumor cell-targeted glutamine antagonists intended to circulate intact in plasma and be preferentially biotransformed to
DON in tumor cells.

• Using a well-defined screening paradigm, we discovered compound 6, (isopropyl 2-(6-acetamido-2-(adamantane-1-carboxamido) hexanamido)-6-diazo-5-oxohexanoate), that
showed stability in plasma, liver and intestinal homogenates, yet was readily cleaved to DON in P493B human tumor cells. When directly compared to DON, compound 6,
exhibited 55-fold enhanced P493B cell-to-plasma ratio. In a time-dependent study, compound 6 showed sustained DON delivery to P493B cells while maintaining minimal
release in human plasma. Moreover, in a cell proliferation assay, compound 6 showed dose-dependent inhibition of P493B cell growth.

• Using plasma from CES1-/- mice, wild-type mice and human, we confirmed that compound 6 exhibited similar stability in CES1-/- mice and human plasma but not in wild-type
mice plasma. We then performed pharmacokinetic evaluation in C57BL/6 CES1-/- mice bearing flank murine EL4 tumors.

• Following subcutaneous dosing (1 mg/kg DON equivalent), compound 6 exhibited excellent pharmacokinetics with a ~5-fold higher DON tumor exposures
(AUC = 5.1 nmol*h/g) versus plasma (1.1 nmol*h/mL) and a 11-fold higher tumor exposures versus GI-tissues (toxicity site; AUC = 0.45 nmol*h/mL).

• These studies describe discovery of a tumor targeted glutamine antagonist. In addition, we introduced a murine model, that recapitulates human metabolism and can be broadly
utilized in prodrug development. Future studies will investigate the dose dependent efficacy and safety of compound 6 in tumor bearing C57BL/6 CES1-/- mice.

• Chemistry: A series of DON prodrugs with ε-acetylated lysine on DON’s amine were synthesized for selective activation by
tumor-enriched proteases such as histone deacetylases (HDACs) and cathepsins (e.g. Cathepsin B and L) based on a recently
reported strategy for prodrug of puromycin.2

• Tissue stability: In vitro plasma and tissue homogenate (liver and GI tissue) stability assays were performed as previously
reported.3 Briefly, prodrugs were spiked in plasma or swine tissue homogenates and percent remaining at 1 h was determined via
LC-MS/MS.

• Tumor cell/plasma partitioning: Human cancer cells (e.g. DU4475, H69, P4P3B) were incubated with test compounds (assay
concentration: 20 µM) in 1 mL human plasma for 1 h. Cells were pelleted, and both plasma and cells were analyzed for DON
release by LC-MS/MS, as we have described previously.4

• Cell viability: Assay was performed using CellTiter 96® AQueous One Solution Cell Proliferation reagents (Promega, USA).
Briefly, P493B lymphoma cells were plated in 96 well plates at a density of 20000 cells/well. Cells were allowed to proliferate
for 72 h in the presence of test compounds. Thereafter, 20 μL of CellTiter 96™ AQueous (Promega #3580) was added per well
and incubated for 2 h. Absorbance was measured at 490 nm.

• Pharmacokinetic study: CES1-/- mice were injected with EL4 mouse lymphoma cells via subcutaneous (SC) injection (1×106

cells in 0.2 mL of phosphate-buffered saline) on the flank of each mouse. When tumors grew to a mean volume of around 400
mm3, 6 was administered subcutaneously to mice (n=3 mice per time-point, 2 males and 1 female) at a dose of 3.2 mg/kg (1
mg/kg DON equivalent dose). Plasma, tumor and jejunum tissues were collected for quantification of both DON and intact
prodrug. Bioanalysis of the samples was performed using LC-MS/MS.

* These compounds have been licensed from Johns 
Hopkins to Dracen Pharmaceuticals.
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Figure 2: In vitro metabolic stability studies in  (A) 
plasma from wild-type (WT) mice, CES1-/- mice, swine 
and human and (B) swine tissues including liver 
(metabolic site) gut (toxic site) and P493B  tumor cells 
(target site)

Figure 3: Human tumor 
cell-to-plasma partitioning 
of 6 in three different tumor 
cell lines
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Figure 1: Chemical structures of  glutamine 
analogs and prodrugs

6

Matrix Cmax (nmol/mL or nmol/g) Tmax (h)
AUC0-t (nmol.h/mL or  

nmol.h/g)
Plasma 0.82±0.12 0.25 0.40
Tumor 0.05 ± 0.01 0.50 0.03

Jejunum BLQ BLQ BLQ
DON (1) from 6

Matrix Cmax (nmol/mL or nmol/g) Tmax (h)
AUC0-t (nmol.h/mL or  

nmol.h/g)
Plasma 0.44±0.04 0.50 1.06

Tumor 1.55 ± 0.19 1.00 5.07

Jejunum 0.45 ± 0.18 0.50 0.45

Figure 5: (A) Pharmacokinetic profile of prodrug 
and DON release from prodrug in EL4 tumor-
bearing CES1-/- mice  (B) Pharmacokinetic 
parameters. 

Figure 4: (A)Metabolite identification and biochemical activation pathway in 
Tumor Cells. (B) Bioactivation of 6 in presence of human recombinant enzymes (C) 
Cell viability of P493B cells using DON or Prodrug 6

Mechanism of tumor cell targeting Structure of Boc-Lys(Ac)-Puro

• Successfully synthesized ε-acetylated lysine prodrug on DON’s amine of which 
prodrug 6 was the lead 

• 6, showed stability in plasma, liver and intestinal homogenates, but was readily
cleaved to DON in multiple tumor cells providing a 40- 55-fold enhanced tumor cell-
to-plasma ratio

• The mechanism of 6 bioactivation was shown to involve both cathepsin B and L.
• Using CES1-/- mice that recapitulated human metabolism, we showed 6 preferentially

bioactivated in tumor affording 5- and 11- fold higher tumor exposures versus
plasma and intestinal tissues, respectively
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