JHU395, a nervous tissue penetrant glutamine antagonist, restricts growth of malignant peripheral nerve sheath tumor with inhibition of nucleotide synthesis

Kathryn M. Lemberg\(^1,2\), Liang Zhao\(^1\), Ying Wu\(^2\), Vijayabhaskar Veeravalli\(^2,3\), Jesse Alt\(^2\), Joanna Marie H. Aguilar\(^2\), Lukáš Tenora\(^2\), Michael Nedelcovych\(^2,3\), Cory Brayton\(^4\), Pavel Majer\(^5\), Jaishi Blakeley\(^1,3\), Rana Rais\(^2,3\), and Barbara S. Slusher\(^1,2,3,5\)

\(^1\)Department of Oncology, \(^2\)Johns Hopkins Drug Discovery, \(^3\)Department of Neurology, \(^4\)Department of Molecular and Comparative Pathobiology, \(^5\)Departments of Psychiatry, Neuroscience, and Medicine, Johns Hopkins School of Medicine, Baltimore, MD, \(^6\)Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic

Background

- Malignant peripheral nerve sheath tumor (MPNST) is a deadly sarcoma that occurs in up to 15% of people with the cancer predisposition syndrome neurofibromatosis type I (NF1) and for which there are no effective medical treatments [1].
- Metabolic inhibitors have been underexplored in MPNST; we and others have found that glutamine deprivation inhibits growth of human MPNST cells in culture [2].

Future Directions

- Investigates JHU395 combination strategies with nucleotide synthesis inhibitors
- Investigate glutamine utilization and JHU395 sensitivity in additional MPNST models including patient-derived samples

Acknowledgements & Disclosures

We thank Dr.4 Prema Blanche for peptides/peptide libraries and Dr. Caryn Krilich for assistance with graphing. We thank Drs. Fiszman and N. Young for advice with culture. This work was supported by NIH R01CA187835, R01CA225222, the Diabetes Research Institute for Cancer Therapeutics (DRI-CT), and a Children’s Cancer Research Foundation grant. P.J. acknowledges support from DRI-CT. J.M. is supported by the Department of Defense in the UK grant BE1815. B.S.S. is supported by the Netherlands Organization for Scientific Research Vidi grant (016.171.315) and the Dutch Cancer Society (KWF) grant (2012-4415).

References